Blog Tags: Data Engineering

Choosing the Right Agile Framework: A Data Engineer’s Guide for 12 Key Projects

Agile is fast becoming the rulebook for data engineers navigating high-stakes projects from migrations to real-time fraud detection. By tailoring frameworks like Scrum, Kanban, SAFe, or the Spotify Model to specific delivery challenges, teams can unlock speed, clarity, and resilience. In this blog, we share real-world project examples and best practices that show how the right Agile approach transforms data engineering outcomes.

Read More

What is Data Observability Used For?

Learn how Data Observability can enhance your business by detecting crucial data anomalies early. Explore its applications in improving data quality and model reliability, and discover Tiger Analytics’ solution. Understand why this technology is attracting major investments and how it can enhance your operational efficiency and reduce costs.

Read More

11 Ways Data Engineers Can Leverage an Agile Mindset to Help Drive Value Efficiently and Effectively

This comprehensive guide explores how Agile methodologies can be applied to data engineering within the Tiger Gene framework. It outlines key principles such as welcoming change, working in small increments, and continuous improvement. The article provides practical scenarios, pros and cons, and solutions for implementing Agile practices in data engineering projects. Data engineers can learn how to drive efficient and effective value through enhanced collaboration, flexibility, and iterative development, ultimately improving their project outcomes and team dynamics.

Read More

Solving Merchant Identity Extraction in Finance: Snowpark’s Data Engineering Solution

Learn how a fintech leader solved merchant identification challenges using Snowpark and local testing. This case study showcases Tiger Analytics’ approach to complex data transformations, automated testing, and efficient development in financial data processing. Discover how these solutions enhanced fraud detection and revenue potential.

Read More

In Digital, We Trust: A Deep Dive into Modern Data Privacy Practices

Explore the interplay between data utilization and privacy in fostering digital trust. Uncover key measures like Data Classification and Encryption, and compare encryption practices on AWS and GCP. Real-world scenarios illustrate applied privacy considerations in tech-driven exchanges.

Read More

A Comprehensive Guide: Optimizing Azure Databricks Operations with Unity Catalog

Learn how Unity Catalog in Azure Databricks simplifies data management, enabling centralized metadata control, streamlined access management, and enhanced data governance for optimized operations.

Read More

Enabling Cross Platform Data Observability in Lakehouse Environment

Dive into data observability and its pivotal role in enterprise data ecosystems. Explore its implementation in a Lakehouse environment using Azure Databricks and Purview, and discover how this integration fosters seamless data management, enriched data lineage, and quality monitoring, empowering informed decision-making and optimized data utilization.

Read More

Unleash the Full Potential of Data Processing: A Roadmap to Leveraging Databricks

Efficient data processing is vital for organizations in today’s data-driven landscape. Data ingestion service, Databricks Auto Loader, streamlines the complex data loading process, saving time and resources. Learn how Tiger Analytics used Databricks to manage massive file influx and enable near real-time processing, enhancing data quality and accelerating decision-making.

Read More

A Practical Guide to Setting Up Your Data Lakehouse across AWS, Azure, GCP and Snowflake

Explore the evolution from Enterprise Data Warehouses to Data Lakehouses on AWS, Azure, GCP, and Snowflake. This comparative analysis outlines key implementation stages, aiding organizations in leveraging modern, cloud-based Lakehouse setups for enhanced BI and ML operations.

Read More

How to Design your own Data Lake Framework in AWS

Learn how you can efficiently build a Data Lakehouse with Tiger Data Fabric’s reusable framework. We leverage AWS’s native services and open-source tools in a modular, multi-layered architecture. Explore our insights and core principles to tailor a solution for your unique data challenges.

Read More

Unlocking the Potential of Modern Data Lakes: Trends in Data Democratization, Self-Service, and Platform Observability

Learn how self-service management, intelligent data catalogs, and robust observability are transforming data democratization. Walk through the crucial steps and cutting-edge solutions driving modern data platforms towards greater adoption and democratization.

Read More

Revolutionizing Business Intelligence: Trends, Tools, and Success Stories Unveiled by Tiger’s BI Framework

Uncover Modern BI’s impact with real-world cases. Learn how embedded BI resolves scattered stacks, harnessing Big Data for insights. Explore Tiger’s BI Framework, Dashboard Program, and Metadata Extractor, enabling data democratization for transformative solutions.

Read More
Copyright © 2025 Tiger Analytics | All Rights Reserved