Challenges in data quality are increasingly hindering organizations, with issues like poor integration, operational inefficiencies, and lost revenue opportunities. A 2024 report reveals that 67% of professionals don’t fully trust their data for decision-making. To tackle these problems, Tiger Analytics developed a Snowflake native Data Quality Framework, combining Snowpark, Great Expectations, and Streamlit. Explore how the framework ensures scalable, high-quality data for informed decision-making.
Read More
Learn why data quality is one of the most overlooked aspects of data management. While all models need good quality data to generate useful insights and patterns, data quality is especially important. In this blog, we explore how data profiling can help you understand your data quality. Discover how Tiger Analytics leverages Snowpark and Streamlit to simplify data profiling and management.
Read MoreLearn how Data Observability can enhance your business by detecting crucial data anomalies early. Explore its applications in improving data quality and model reliability, and discover Tiger Analytics’ solution. Understand why this technology is attracting major investments and how it can enhance your operational efficiency and reduce costs.
Read More
Discover how Snowpark Python streamlines the process of migrating complex Excel data to Snowflake, eliminating the need for external ETL tools and ensuring data accuracy.
Read More
Dive into data observability and its pivotal role in enterprise data ecosystems. Explore its implementation in a Lakehouse environment using Azure Databricks and Purview, and discover how this integration fosters seamless data management, enriched data lineage, and quality monitoring, empowering informed decision-making and optimized data utilization.
Read More
Accurate data is crucial for informed decisions. Organizations must set clear data quality objectives, implement early data quality processes, and deploy IT solutions aligned with business goals to achieve this. Read how utilizing the Tiger Data Quality framework for automation can help enhance efficiency and eliminate manual data quality checks for better outcomes.
Read More
Learn how self-service management, intelligent data catalogs, and robust observability are transforming data democratization. Walk through the crucial steps and cutting-edge solutions driving modern data platforms towards greater adoption and democratization.
Read More