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When solving complex optimization use cases, such as yield maximization, waste
minimization, and network optimization, analytics leaders are often required to move
quickly. However, without a deep understanding of the underlying mathematical problem
and the right solver strategy, the project could lead to cost inefficiencies and scalability
challenges. This white paper examines how modeling choices and use-case-specific

strategies help build reproducible and scalable optimization solutions and includes a
comprehensive study on open-source solvers.




From optimizing delivery routes in retail,
scheduling manufacturing batches in
consumer goods, allocating media spend in
marketing, or setting dynamic prices in
travel and hospitality, operational decisions
are rarely straightforward. They involve a
complex web of constraints, trade-offs,
and changing business goals. To remain
competitive, sustainable, and profitable,
industries must embrace real-time agility.

Yet, scaling this agility is no small feat. The
challenge for analytics leaders and
operational researchers tasked with
delivering these outcomes is translating
business objectives into solvable
mathematical models that take into account
real-world constraints, changing inputs, and
still provide timely, actionable outputs.

Our Wortk

One approach to solving such nuanced
and interconnected problems is through
the lens of Large-Scale Optimization, a
discipline within Operations Research (OR)
which enables decision-making grounded
in formal mathematical methods.

At Tiger Analytics, we have worked with
several Fortune 1000 clients across
industries on such problems over the
years. We've observed that success with
large-scale optimization often comes
down to modeling choices and use-case
specific strategies. Our experience across
sectors has taught us which approach
works best under different technical and
operational conditions.

In practice, large-scale optimization often comes into play in production scheduling, capacity planning,
inventory management, transportation and logistics, supplier selection, pricing optimization, and media
planning - areas that are both high-impact and extremely complex from a business perspective.
Mathematically modelling and solving such problems brings its own set of concerns.
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In this white paper, we have summarized our learning, solving varied problems
across multiple industries particularly focused on our exploration of open-source
and commercially licensed software, called Solvers. The study provides the
details of solvers available in the market, how they function, and their benefits and
shortcomings.

The report is useful for data scientists and consultants who are solving large-
scale OR problems, and on a regular basis make these decisions regarding which
underlying solver to use.

The scope of this white paper covers the landscape of open-source solvers.

KEY TAKEAWAYS FROM THE RESEARCH

UNDERSTAND OPTIMIZATION PROBLEM COMPONENTS AND TYPES
The paper clearly defines the fundamental elements of an optimization problem,
including objective functions (what to maximize or minimize), decision variables
(what can be controlled), and constraints (limitations)

MAP OR PROBLEMS TO ALGORITHMS AND SOLVERS
The paper provides tabulations that link OR problem types to suitable
mathematical algorithms (e.g., Simplex, Branch and Bound, Gradient) and then

further connects these algorithms to specific open-source optimization solvers
(e.g., GLOP, SCIP, IPOPT)

GATHER PERFORMANCE INSIGHTS FOR LARGE-SCALE OPTIMIZATION
SOLVERS

The study rigorously assesses open-source solvers’ performance in large-scale
optimization for both Linear Programming and Nonlinear Programming Problem

IDENTIFY CONSIDERATIONS BEYOND PERFORMANCE

Beyond just execution time and memory, the paper also assesses solvers
based on crucial practical aspects like Ease of Development, Convergence
lssues
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OR problem formulations

Before we get into the foundational aspects of OR problems, let’s look at some
typical use cases for which clients reach out to us

- Production Scheduling
Optimizing the sequence and timing of manufacturing tasks to
maximize output, minimize costs, and meet deadlines.

Capacity Planning
Determining the optimal production capacity or resource
allocation to meet demand efficiently.

Deciding on optimal inventory levels to balance storage costs,
ordering costs, and the risk of stockouts.

% Inventory Management

Transportation and Logistics

Optimizing delivery routes, vehicle utilization, and network
design to minimize transportation costs and improve delivery
times. An example given is determining optimal transportation
routes and quantities for minimizing shipping costs while
satisfying demand and supply constraints

T
5

-
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Let's have a look at some typical OR problems types

PROBLEM TYPE

DESCRIPTION

SAMPLE PROBLEM

This involves optimizing a
linear objective function

Determining the optimal
transportation routes and

(whole numbers).

LINEAR i : . guantities for minimizing
subject to linear constraints. i :
PROGRAMMING (LP) ThEJ el shipping costs while
EartALGIE satisfying demgmd and
supply constraints.
IP problems are similar to LP Deciding the number of
INTEGER but require all decision delivery trucks to deploy,
PROGRAMMING (IP) variables to be integers where fractional trucks

aren't feasible.

MIXED-INTEGER
PROGRAMMING (MIP)

MIP problems combine the
characteristics of both LP and
IP, involving both continuous
and integer decision variables.

Optimizing production
scheduling where the
number of machines is an
integer, but production
quantities are continuous.

QP problems involve an

Minimizing costs in a
manufacturing process

PROGRAMMING (CP)

satisfying a set of constraints
often involving discrete
variables.

QUADRATIC objective function that is that involves nonlinear
PROGRAMMING (QP) guadratic and constraints that relationships between
are linear or quadratic. production quantities and
cost.
NLP problems involve Optimizing supply chain
nonlinear objective functions performance where
Eggékﬂfﬁfﬂmﬁ or constraints. These are more transportation costs are
(NLP) complex and typically require nonlinear (e.g., bulk
specialized algorithms to discounts based on the
solve. quantity).
. I Scheduling deliveries
CONSTRAINT P y windows, vehicle

capacities, and delivery
constraints need to be
met.
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“Mathematical algorithms to solve OR problems

There are several mathematical models that could be used to solve a particular type of
OR problem. We have restricted ourselves to the most typically used mathematical
algorithms in the industry.

Simplex method:

A popular method for solving linear programming (LP) problems by iterating through
feasible region vertices to find optimal solutions. Variants like the dual Simplex
method handle infeasible starting solutions.

Branch and Bound method:

An algorithm for integer programming that explores a decision tree, dividing
problems into subproblems ("branches") and using bounds to eliminate
suboptimal solutions.

Branch and Cut method:
An algorithm for integer programming (IP) and mixed-integer

03  programming (MIP) that combines branch and bound with cutting planes
for improved efficiency.

Gradient method:

An iterative optimization algorithm that minimizes or maximizes a function by
moving in the opposite direction of the gradient, commanly used in continuous
optimization.

Interior Point method:

Algorithms for large-scale linear and nonlinear optimization problems that move
through the interior of the feasible region, efficient for problems with many
variables.
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Here is a cross-tab between OR problems and mathematical algorithms as explained in
previous sections

PROBLEM TYPE

Linear programming
(LP)

Integer
programming (IP)

Mixed integer
programming (MIP)

Quadratic
programming (QP)

Non-linear
programming (NLP)

Constraint
programming (CP)

Table 1: OR problem type versus mathematical algorithms
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Optimization solvers versus mathematical algorithms

The next step is to look at which solver supports these mathematical algorithms. The
solvers listed below support various mathematical algorithms, but we have limited our
selection to the ones that are most commonly used.

SOLVERS SOLVER TYPE m;‘ | SRANEH mupm : GRADIENT | HFT&H‘"UH
GLOP Open IF license X X
POLP Open IP license X X
SCIP Open IP license ¥ b § X

CP-SAT Open IP license X
CBC Open IP license X
GLPK Open IF license X X X
HIGHS Open IP license X X o X
IPOPT Open IP license X
BOMMIM Open IP license o
COUENNE Open IP licensa i3
SLsSQP Open IP licensea X
GUROEBI Commercial llcense X X X X
CPLEX Commercial license X X X X
XPRESS Commercial license ¥ X X X
HEXALY Commercial license ¥ X X X

Table 2: OR problem type versus mathematical algorithms
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Solvers versus OR problem type

Using the data from the two tables listed above, we can now synthesize a problem type
versus solver matrix. This serves as a guide to data science practitioners starting on
new OR use cases.

GLCP

PDLF

SCIP

CP-SAT

CBC

GLPK

HIGHS

IPOPT

BOMMIM

COUEMME

SLEGP

GUROEI

CPLEX

XPRESS

HERALY

Tabje 3: OR problem type versus mathematical algorithms
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Solver Analysis — Large-scale optimization

As referenced from Table 3, there are multiple solvers that can be used to solve a
particular OR problem type. We tested these solvers against two problems to better
assess their performance.

These are the two problems we worked on.

s, %

1. MARITIME INVENTORY 2.SATELLITE LAUNCH VEHICLE
ROUTING PROBLEM PLANNING PROBLEM

Mixed Integer Programming Non-linear Programming

Problem Problem

Testing process

We evaluated each solver by progressively increasing the number of variables and
measuring the following metrics across multiple runs using the same configuration.

Average execution Average peak memory usage
(in seconds) (in MBs)

Additionally, we also tested the reproducibility of the results across repeated runs.
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Solver Assessment - Linear programming

USE CASE #1: MARITIME INVENTORY ROUTING PROBLEM (MIRP)
BRIEF

As the name suggests, this a combination of inventory management and routing
problems. While MIRP is a class of problems, our focus for this study is a particular type
called a single product maritime inventory routing problem. The key assumption here is
that the time taken to travel across ports is significantly greater than the time a vessel
spends at the port for loading/unloading. Therefore, on-port operations are not
modelled here.

OBJECTIVE
Maximization of revenue, with revenue described as:
Revenue = Revenue from discharge - Travel cost - Attempt cost

CONSTRAINTS

Inventory balance

<l><—D Port ficnfv balance )\ constraint for port and
O-0 constraint = / vessels

& Empty-return constraint to Travel-at-capacity
=Im| |
—— | terminal port constraint from origin port

Port capacity constraint

(1) gdnatrakuetf—sbeailssii;:: E;;alsm;t ¢' with regards to number of
=inl ¥ P ~¢ vessels that can dock and

or open markets load/unload simultaneously

Refer the appendix for relevant literature

We tested solvers by increasing the number of decision variables from ~10k to ~500k
and recorded the performance metrics for each configuration.
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1.6.1.1 Average execution time versus number of variables

- CP-SAT behaves quite differently when compared to other solvers, which is
expected given it is more of a constraint programming solver.
- PDLP, on the other hand, shows a sharp increase in execution time as we move

from 10k to 100k decision variables.

Salver »
12000 4 e CBC_ SOLWER e P SAT_SOLVER GLOP e Mg i DL P

NUMiHET OF varalees [Iog scake)

Plot 1.1: LP Solvers All - Average execution time versus number of decision variables

We get a better view of the other solvers after filtering out CP-SAT and PDLP.

- As we move towards 50k decision variables, CBC performance takes a hit.
- HiGHS and GLOP solvers continue to perform well throughout, though we can
observe a slight increase in execution time as we move from 150k decision

variables to 500k decision variables.

e CBC_SOLVER

AvErage axsIut

Plot 1.2: LP Solvers Select — Average execution time versus number of decision variables
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1.6.1.2 Average peak memory usage versus humber of decision
variables

- We see a quadratic increase in memory usage as the number of variables increase.
- As expected, CP-SAT consumes significantly more compute resources compared
to other solvers.

Soiver v
OO VR —m—=CF GAT JOYER se=(LOF ==S—ighy —pOLF

Plot 2.1: LP Solvers All - Average peak memory usage versus number of decision variables

- Once we filter out CP-SAT and PDLP (due to insufficient data points), we notice:

- A significant impact on peak memory usage as we move from ~150k to ~500k
across all solvers.

- This impact is more exaggerated for CBC when compared to other solvers.

Sebvar T

e CEC HSIR  m—OyTE Hges

408 413 1.2% 1 432 441 151 ch a05 434 +.E B0l

Plot 2 2: [ P Solvers Select — Average peak memory usage versus number of decision variables

1.6.1.3 Reproducibility of results

When comparing solver outputs (objective function values) across multiple runs for
the same configuration, we observed consistent results for all solvers each time.
This indicates that the solvers produce reproducible outcomes under identical
configurations.
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Solver Assessment — Non-linear programming

USE CASE #2 SATELLITE LAUNCH VEHICLE PLANNING PROBLEM

BRIEF

Aerospace stands out as one of the most advanced and rapidly evolving fields in
modern engineering, but it is also a capital-intensive industry. Hence, a lot of cost
models have been developed to establish a relationship between launch vehicle
development, deployment and the actual launch. Here, we're working on optimizing such

cost models.

OBJECTIVE
Minimization of cost. We estimate costs using Cost Estimating Relationships (CERs)
which gquantify the correlation between different variables that impact launch vehicles

and their associated cost components.

CONSTRAINTS

There are various constraints applied, which can be broadly classified into:

1010 Constraints on interrelationship of variables

1010

= Constraints related to basic functioning, driven by
—L::: scientific laws

{é@} Constraints on overall performance
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1.6.2.1 Average execution time versus nhumber of variables

- Performance of both BONMIN and IPOPT solvers take a hit as we move towards
more than 50k decision variables in the model.

T i B LR

= LA i e —— o 1 S —————

e o /

ey -y v T T = o T T ——————

et b & e g ot vl P

Plot 3.7: NLF Solvers Alf — Average execution time Flot 3.2- NLF Solvers Sefect — Average execulion time
versus number of decision variables varsus number of decision variables

- SCIP and SLSQP, on the other hand, couldn't cope as we scaled the number of
launch vehicles (i.e.) the number of decision variables

- For SCIP solver with launch vehicle count between 1 and 5, its
objective function value was exactly the same as IPOPT and
BONMIN. However, as we scaled further, the solver ran indefinitely.

- For SLSQP, objective function values were different from optimal
values and were largely dependent on the initial states.

S of avg_schver_time

250,000 o

200,000 4

(5}

E

100,000 1

AvETrAgE sxeCcution T

50,000 4

&
- T i r

157 116 116 156 155 116 356

number of variables {liog scale)

Blot 3.3: NLP Solvers Select- Average execultion time versus number of decision variables
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1.6.2.2 Average peak memory usage versus nhumber of decision variables

- Memory usage for IPOPT and BONMIN solvers increases as we go beyond 10k
variables and jumps again only once we move to ~100k variables

2
=

g

siver v

8

— T —— T e A e—

5000 4

Axit Average mermony usage (mb)
g 8

1,000 1

L57 186 126 156 195 126 156 173 iBE 195 4216 443 455 47 435 503

rurnber of vanabhes [log scale)

Plot 4. 1: NLP Solvers Al — Average peak memory usage versus number of decision variables

- Memory usage for SLSQP increases exponentially as we move towards ~100
variables

8,000
7,000
siver T

6,000 i L] i 6
5000
4,000
3,000 4

2,000

Axis Average mermory usage (mb)

i — .

157 186 125 156 135 16 356
nurmber of variables {log scale)

Piot 4.2: NLP Solvers Select = Average peak memory usage versus number of decision variables

For SCIP, tests with higher variable counts were discontinued as the solver
exhibited indefinite runtimes, requiring manual termination.
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Solver Assessment — Few other callouts

FRAMEWORK SOLVER

OR-Tools GLOP Easy Low Yes Strong High
OR-Tools PDLP Easy Moderate Yes Strong High
OR-Tools scCip Easy Moderate Yes Strong High
OR-Tools CP-SAT Easy Low Yes Strong High
PulLP CBC Moderate Moderate Yes Strong High
HiIGHS HiGHS Easy Low Yes Strong High
COIN Ipopt Moderate Moderate No Moderate Moderate
COIN Bonmin Moderate Moderate No Moderate Moderate
COIN Couenne Moderate Moderate No Moderate Moderate
COIN sLsQP Low Moderate No Moderate Moderate

Table 4: Efficiency hightights of solvers for OR applications
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Conclusion

As enterprises continue to refine and accelerate their decision-making processes, large-
scale optimization will play an increasingly crucial role in enabling real-time agility. Our
study of open-source solvers highlights the importance of choosing the right solver
strategy based on problem structure, performance needs and resource considerations.
An understanding of the capabilities of different solvers empowers analytics leaders to
make informed, context-aware decisions.

OUR RECOMMENDATIONS

_ PRIORITIZE HIGHS AND GLOP FOR LARGE-SCALE LP
(H:l For large-scale Linear Programming problems where performance is
g critical, HIGHS and GLOP appear to be robust choices, maintaining
good performance even as variables increase

CONSIDER BONMIN/IPOPT FOR SCALABLE NLP

/‘ \  For large-scale Linear Programming problems where performance is
critical, HIGHS and GLOP appear to be robust choices, maintaining
good performance even as variables increase

/ . EVALUATE SCIP AND SLSQP CAREFULLY FOR NLP
‘/rﬂﬁs\ | We recommend careful evaluation or avoidance of SCIP and SLSQP for
very large-scale NLP problems due to observed indefinite runtimes
(SCIP) and dependence on initial states/suboptimal results (SLSQP)

HOLISTIC EVALUATION

We strongly recommend using the data from Table 4 as a checklist

o when selecting a solver to ensure that factors such as ease of
development, convergence reliability, binary variable support, and
community assistance align with project needs and team capabilities.
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Appendix

Problem overview and data:
https://mirplib.scl.gatech.edu/home

Problem formulation:
https://mirplib.scl.gatech.edu/sites/default/files/Groupl MIP Model.pdf
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ABOUT TIGER ANALYTICS
-

Tiger Analytics is a global leader in Al and analytics, helping Fortune 1000 companies
solve their toughest challenges. We offer full-stack Al and analytics services and
solutions to help businesses achieve real outcomes and value at scale. We are on a
ission to push the boundaries of what Al and analytics can do to help enterprises
gate uncertainty and move forward decisively. Our purpose is to provide
rtainty to shape a better tomorrow

Being a recipient of multiple industry awards and recognitions, we have 4000
technologists and consultants, working from multiple cities in 5 continents.
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