
A leading US-based Fortune 500 Life 
insurance carrier implements accelerated 
underwriting process

Building an accelerated underwriting process for client by 
leveraging AI/ML for extracting encoding data and 
automated risk assessment, reducing the need for 
invasive procedures like Lab tests, Examiner reports, APS.
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Our client is a leading US-based Fortune 500 Life insurance carrier receiving 
thousands of applications annually from prospects and agents for Life Insurance 
coverage. The current application approval process requires a manual review and 
depends on invasive procedures for risk assessment. The process is lengthy, non-
standardized, and inefficient, leading to a low bind ratio and higher chances of risk 
misclassification. Further, there is a high evidence cost associated due to the 
requirement of invasive procedures.

Creating predictive model-based approach to build STP framework using fluid-
less, examination-less, and non-APS evidence data can improve underwriting 
accuracy and efficiency, reduce evidence collection costs and risk 
misclassification cost.

Can an AI/ML led accelerated underwriting framework help our client to augment 
and improve current underwriting process by triaging high and low risk 
applications?

The Background

Key Challenges

\ Challenge 1: High domain complexity requires medical 
SME involvement on a regular basis for steering the 
project

\ Challenge 2: Dependency on unstructured data sources, 
requires advanced NLP techniques for accelerated 
information extraction

\ Challenge 3: Clear reasoning and interpretability from 
the modeling process is required for the underwriters, to 
drive adoption
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Step 1: AUW eligibility, pre-fill, and evidence sourcing: 
Determine underwriting eligibility based on application and 
evidence data (MVR, MIB, RX) and APS

Step 2: STP eligibility decisioning and risk class slotting: Build 
Decision Triage model to identify STP eligible claims and a multi-
class risk classification model, directly predicting mortality risk

Step 3: UW review and final decision- making: Build knock-out 
frameworks and adverse reason modules to assist underwriters 
make the final decision

Our Solution
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Tech Stack
NLP based feature extraction and disease tagging from 
Attending Physician Statements (APS)

LIME and SHAP frameworks for adverse reasoning 

Linear Survival modelling framework for direct
mortality prediction 

Multi-variate non- linear classification for risk slotting
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Solution Architecture 
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Tiger Analytics is a global leader in AI and analytics, helping Fortune 1000 
companies solve their toughest challenges. We offer full-stack AI and analytics 
services & solutions to help businesses achieve real outcomes and value at 
scale. We are on a mission to push the boundaries of what AI and analytics can do 
to help enterprises navigate uncertainty and move forward decisively. Our 
purpose is to provide certainty to shape a better tomorrow.

Being a recipient of multiple industry awards and recognitions, we have 4000+ 
technologists and consultants, working from multiple cities in 5 continents.
www.tigeranalytics.com

US | UK | Canada | India | Singapore | Australia
. 

About Us

Transformed underwriting process 
through AI/ML driven solution for 
extracting encoding data and 
automated risk assessment

• Designed accelerated underwriting 
workflow to augment current 
process which can save ~ 39% of 
evidence costs with ~ 40% STP 

• Developed decline propensity 
model with 86% accuracy for all 
non-APS ordered policies

• Built predictive models to assign 
risk classes with overall accuracy 
of 70%

Value Delivered

http://www.tigeranalytics.com/

