Business Objective
Our client is a leading North American 3PL (Third Party Logistics) company that has a strategic partnership with Tiger Analytics for their digitization and analytics transformation journey (Roadmap 2023). As part of their Digital Freight Matching platform program, the client wanted to use AI/ML based Carrier Pricing model recommendation to improve the carrier price discovery.
Challenges
- Lack of adequate modeling data due to outliers and incorrect data
- High variation in carrier pricing for routes < 150 miles
Solution Methodology
- Utilized load, carrier, and market-rate data and other external factors (macroeconomic, fuel rate) to develop the model
- Built and deployed a robust, scalable, and cost-effective pricing recommendation engine to predict/recommend the optimal “Carrier Buy Price”
Business Impact
- 2.5 % margin lift due to pricing engine usage, which resulted in improved sales conversion and significant EBIDTA
- AI/ML based Carrier Pricing model enabled agents to negotiate better deals and provided detailed insights to improve operational and agent performance